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Introduction 

The capacity of the Gaussian channel without feedback, subject to a 

generalized energy constraint, is determined in [1]. In that work, the 

constraint is given in terms of the covariance of the channel noise process. 

However, there are many situations where one may wish to determine capacity 

subject to a constraint determined by a covariance that is different from that 

of the channel noise. Examples are jamming or countermeasures situations, or 

when there is insufficient knowledge of the natural environment. 

Channels where the covariance of the noise is the same as that of the 

constraint will be called matched channels; otherwise, we say that the channel 

is mismatched (to the constraint). In this paper, the capacity of the mismatched 

Gaussian channel is determined. Kesults for a restricted class of mismatched 

channels are given elsewhere [2]. Various special cases of the mismatched 

channel have been treated previously [3] - [5].   . 

The results for the mismatched channel differ significantly from those for 

the matched channel. A discussion of these differences follows the proof of 

the main result. 



Definitions and Structure 

The channel  is defined as in [1].    H,  and H^ are real  separable Hilbert 

spaces with Borel   cr   fields 3-,  and $2 and inner products <-.->i  and <-,->2- 

The message process  X in H-,   is  represented by a probability yw on  (H, ,3-]). 

The message is encoded into the transmitted signal  A(X) in H^ by a 3,/Bp-measurable 

coding function A.    To each sample function of the signal  process, the channel 

adds a sample function from the noise process N, represented by a Gaussian measure 

]i    on (H„,3^).    The received signal   (channel  output)  is then a sample function 

from the process Y = A(X) + N, represented by the measure py-    ^^ usual  X and N 

are assumed independent, so that \i^{^) - y>,8p|^{(X,Y): A(X) + Y e B} where 

vJ^M-y, is  product measure.    The channel  probability ywy, which has marginal measures 

y„ and yw' Ts a measure on (H-,  x Hp,  3-.  x 3^) defined by ywy  (C) = 

y„8yj^, {(X,Y):   (X,A(X) + Y)eC}.  The average mutual  information is then iCy^y], 

where Uuvy] =°°if it is false that y^y is absolutely continuous with respect 
c rdii,,,, 

(x,y) dyyv  (x,y^ to y^gyy  (y^Y«y^8yy), and otherwise iCuxy^ ^       I     ^°3 
dyxY 

H^xH2 
dyx^^yJ   '   '■''  ^XY 

The information capacity is then sup I [ywy], where Q is a set of admissible 

pairs  (y^.A), 

For this paper, a covariance operator in a Hilbert space will  be defined to be 

a symmetric, non-negative, and trace-class bounded linear operator.    The constraint 

on the transmitted signal  process A(X) will  be given in terms of a covariance 

operator R^^ in W^, as is well-known, to ^M^V)/ such covariance operator there 

corresponds a zero-mean Gaussian measure on (H^.B^). 

When H2 = \-2 [0,T] and R is a covariance operator, R can be represented as an 

integral  operator with kernel  R which is a covariance function.    There is then a 

well-known isomorphism between range (R/^)   and the reproducing kernel  Hilbert space 

of R.    All  measures considered here will  be assumed    WLOG to have zero mean.    The 

capacity will  he determined under the following assumptions: 



1/2        1/ 
(A-1)   f^M "^ f^u  (I + S) RJ , where R|y is the covariance operator of the noise 

measure y^, and S is a bounded linear operator with pure point spectrum that does 

not have -1 as a limit point of its point spectrum; 

(A-2)  The admissible set Q is the set of all (liy 'A) such that 

H  ||R^^^ A(x)||2 dyj^(x) < P, where P>0 is fixed. 

^ ^_ 1/2 
It will  be assumed WLOG [1] that range {R^,) = H„, so that R.,'       exists. -, 

-1/2 "^ y? /2 
Assumption  (A-1)  then implies  that R^,'      exists;  in fact, that range  {R^^     )= range (Rw    ). 

1/2       1/2 72 
Thus, there exists a unitary otaerator U in H^ such that R/ -= Ru   (^ + S) '   U*, where 

U* is the adjoint of U. 

The class of all  zero-mean Gaussian measui^es PM with covariance operator as 

in (A-1)  includes all  those that are mutually absolutely continuous with respect 

to Py, where y^, is zero-mean Gaussian with covariance RwCfi]- 

.    From the results of [1], one can limit attention to cases where V'^of) Is 

Gaussian with covariance operator 

1/ 1/2 

where x^ > 0 for n >^ 1, z^ x^ < -,{u^, n > 1}    is a c.o.n.  set and (UHV)X = <v,x > u. 

When P^^^^ has  (2)  for covariance and is Gaussian then [1] 

IbxY^ =  (^2): Z^ log  [1   + x^]. (3)    .. 

Moreover, 

^,IIV'^'A(S)||^ Trace R-V2   R^^^^R^'V^ 

s TJ|(I +S)^/2   U*UJ|^ (4) 

(5) 

Defining ^^ = TJ | (I + S) ^^   U*uJ|^, the capacity problem is thus 

reduced to maximizing      1        , [i  + x^ (i  + , )-l] 
n  ^     n    'n 

over all sequences (X ) and c.o.n. sets {v„, n > 1} such that z X^ < P, 
" .     n  — n n — 

where y^ =  <Sv^, v^ > 2, n > 1. 

The suprem urn of (5) subject to the stated constraint is the capacity 

and will be denoted as Cj^(P); the capacity for the matched channel (R,, = R ) 
W   N 

will be denoted by C|.(P). - 



In the case where Ho is infinite-dimensional, e will denote lim inf of the 

eigenvalues of the operator S satisfying R^ = R^ iI+S)RjJ • By assumption (A-1), 

9 > -1. {X ,n>l} will denote the eigenvalues of S that are strictly less than 6; 

of course, this set can be empty. Similarly, {e^,n>l} will always denote an o.n. 

set of H„ elements that are eigenvectors of S corresponding to the eigenvalues 

{A^,n.l): Se^= A^e^, n.l. ; 

Preliminary Results 

Leiuna 1: Let (y ). n £ M, be any non-decreasing sequence of strictly positive 

real numbers. Let (X ) be any sequence of M real numbers. Fix P>0, and define 

g{M,P,Y) =   sup    n (Yp + Xn)/Yn- 

{X:: E X < P} 
\ I n - 

1/1/ • ,'      .    . 

Then g(M,P,Y)= n {] y-  + P)/{\^y^) 
~ n=l K 

where K < M is the largest integer such that T. y.  + P ^ Ky^,.    g(M,P,Y) is uniquely 
- ^  1       N       .    . 

2 
attained by (X ) such that 

K 
X^ = (E Y^- + P)/K - Yp  n 1 K 

/  = 0 n > K. 

M ^ -1 ■ 
Proof:    Define f^^:   IR    -> IR  by fj^(y_) =      E log [1  + y^ Y^^ ]•    We seek to maximize 

f|^ subject to the constraints 
M 

gW =   s Yn - P10 -    ■. 
1.       ■ ■-..'■ 

h.(y.)  =    -y.   < 0,    i   = 1,..,  M. 

This is a constrai.nied optimization problem w:iih objective function f|^ which is concave 

M 
over the convex set {Z in IR ; Z. ^ 0, i = 1,..,M}. Moreover, each constraint 

function is linear. Thus, any solution to this problem will define a unique 

global maximum for f^, [7]. In order that y^* be a solution, it is necessary and 

sufficient that the following set of equations be satisfied [7]: 

V* L  + g- «i = 0   i = 1,.., M (6) 
•^i  i ^ ■ 



^: y* - P < 0,    B[^ y* - P] = 0 - i/) 
1  ^ - 1    " 

(8) -yt < 0,    «. ylf = 0,    i  = 1,..,M 

for some set of non-positive real  numbers  (B, a,,.. ,aj^}. 

We first attempt to obtain a solution by setting a-.  = a^ =  •■■ = cxj^ = 0. 

This requires e(Y-  + y^)      = -1  for i  = 1,.,,M; thus, 

M M _i M    ^      M 
E y*   +   Ey.  =    -MB    , and so   y* = (s y. + Ey-)/M   - Y 
1    i 1  ^ "        1    ^      1  ^ . . 

for n = 1, 2,..,M. This definition of y* and the constraints (8) require that 

. M    M 
E y t + E Y . > M Y 1 -^1  1 M -" 'n 

for n £ M; this  inequality is satisfied for all  n £ M if and only if it is satisfied 
M 

for n = M. Also, B  = -(7,-+ Y-) ^or  i £ M implies B<0, so that E y. = P by 
M 1 

constraints (7). Thus, if P + E y- ^ My«,, an optimum solution is given by 
1 

* 

K 

y.  - (P + Ey^ - My. )/M, i  < M. 

^ K 
If there exists K<M such that Ky|, <_ P + Ey.  <  (K+l)y|,^i, 

then constraints  (6)-(8) are satisfied by choosing B =    -K[P + Ey.]~   , 
1   ' 

a-,   = ar) =   . .   = a^ =  0, 

■ K ^ 

■^ ' sy. = p 
"I ■        ■ 

'■■:"\\ _; ." y* - 0, i >K 
■,;: ■ .■    '   .. i .■ .   ' ■ 

^?=   K-^[P+Ey^-   Ky.],     i   <   K 

a.   =   -K[P  +  Ey^r'   +  y^'      i   >   K 

Thus, 

{X:   EX    < P} 
~ . 1   " 



K 
where K < M is the largest integer such that T,j.  + P > Ky^.    The supremum is 

-,1 -     K 

attained by ^* as defined above, or for 

2 ^ r =  [P + Zy.VK -  y^ n  <  K 

= 0 n > K . 

D 
Lemma 2:    Let {\.), 1 £ i £ K, be a non-decreasing sequence of strictly 

positive real  numbers.    Suppose that (y )  is a non-decreasing sequence such 
J J " K 

that    Zy.   > EX.   for all   J < K,  and let P>0 be such that Ey-  + P > Ky^,.     Define 
1 ] ~ .   1 ~ 

K K 
fv(Y) = n    (P + iy.)/{Ky).    Then f^, (y) < f^,{\) with equality if and only if 

^ ~      n=l 1   ^ " K    .    -   K . 

Y-  = A.  for all   i ^ K. 

K 
Proof:    For any fixed n,  8f|/(Y)/3T„ is negative, using Ey-  + P > Ky^.    Thus f^Cy) 
  i\n -ii —     i\ N^ 

K'  K 
increases for y„ decreasing. One can now assume that Ey = EX . To see this, n       ^ 'n  1 n 

K   K 
suppose EY„ > EX . First assume that there exists p < K such that y >y ^  and ■^■^   1 n  1 n '^ — 'p 'p-1 

^p "^ ^p' '^6^"'"^ 3 sequence (Y^ ) by y^ = Y^^ if n / P, Yp = Yp - e. . 

K 
e   =     min (Yp - yp_^, E (y. - X.), yp - Xp).      ; / . 

Continuina to form new sequences in this manner, one will eventually obtain a 
J    J K   K 

non-decreasing sequence (y„') with Ey'    >_ ix    for all  J £ K, and either Ey'  ^ EX 
n      -in-in i "] ■ 

or else y, == YO ^ ••• - Y'> where p is the largest integer i such that y. ^ x.. 

II II        I 

If the latter case holds, define a new sequence (y ), with y    = y    for 2 < n < K, Kn n        n 
... . I II J J 

while y-,  = y,  -  e, e = min  (YT-X-|, E(y.  - X.)).     (y„)  is non-decreasing and Ey" > E X  . II ii-|ii n -in-in 
I II II K,        ! 

If e = Yn  - X,, the procedure is repeated for (y ) and y^;  if e = E(y.  - X.), the 
II n ^ 1     1 1 

II II 

procedure is  repeated for (y ) and y,.    Continuing in this manner will  eventually 
" K ' „        K 

produce a sequence  (y'') such that ^ y    =    !■ X ■ 
n 1    "        1  i^* 



K    K 
Assume then that z y    = i. X  .    If y and x are not identical, let p £ K 

1 "  1 "    ~    ~ p-1    p-1 p    p 
be the largest integer such that y^ ^ X^;  since T. y^ >_i.      x„ and i y    = Y. X  , 

P        P 11 11 

y   < X .    Let t < p be the largest integer such that Y+ > ^t^ such t must exist. 

Define a new sequence  (y )  by y    = y    if n  ?* t,  n 7^ p, while Yp ~ Yp "^ ^' 

y^ = Y^ -  e,  e '= inf (A    - Yp,    Y^ "A^).    f,^(y)  < f^iy')^ since (y^ -£)(Yp + e) 

■■-■■■-■ 2 ■ 
= Y^Y - e(Y - Yi.) - e , and y >_ y. . This procedure is successively repeated; 

I 

it will terminate when and only when one obtains a sequence (y ) such that 

y = X for all n < K. 'n   n        — 
D 

Main Results 

Theorem 1 

(a) Suppose that H^ has dimension M<oo. The capacity is then 

-1; 
K 

C^(P) =('/2) I    log 
^ n=l 

K 
E g.. + P + K 
1 ^ 
K(i + e^) 

where g-i £ 3p 1 .. 1 3M are the eigenvalues of S, and K is the largest 

integer < M such that Eg. + P > K 3^. The capacity is attained by 

a Gaussian yA/v) ^i^h covariance operator (2), where u = Ue and 

K 
E3- + P - Kg 
1 1      n 

(1 + B )""'K ^ for n £ K, T^ = 0 for n > K, and 

{e , n >_ 1} are o.n. eigenvectors of S corresponding to the eigenvalues (3 ). 

No other Gaussian yn/vN can attain capacity. The same result is obtained 

if Hp has dimension L < «> and v^nfv) is constrained to have support of dimension 

M < L. 



(b) Suppose that H^ is infinite-dimensional and that support (P^(X)) "is 

restricted to have dimension < M < <=<'. 

(i) If {X  ,n>l is empty, then C^^(P} =  (M/2) log [1 + PM"^(l+e)"V Capacity 

can be attained if and only if S has e as an ei^en-value o£ multiplicity > M. 

\- In this case C|,(P) is attained by a Gaussian yA(v^ with covariance {Z), 

where u. = Ue. and x. = PM~ (l+ej" for i<M, with {e^,..,e|^} any o.n. set 

in the null space of S. 

K 
(ii) If KA^ <, Jx.  + P < KA„ , fcr sone K<iM, then the capacity is as in (a). 

Is.  1 -^        K+i 

with g. = X., i = 1,..,K, and can be similarly attained. 

^iii) Let K = min(L,M), where L > 1 is the number o£ eigenvalues o£ S whose value 

K 
is strictly less than 6, and suppose that P + ^A. > KA   The capacity is then 

1 ^   '^ 
K 

K 
LAP)  = hi  log ^W n=l 

p+fl 1 In] 
■ 

1+A 
+ 

2 log 
n ^ ' 

1 

1 + P + I (A.-e) 
i=l ^ 

M(l+e) 

The capacity can be attained if and only if e is an eigenvalue of S with 

multiplicity > M-K. The capacity is then achieved by a Gaussian y^^^ with covariance 

K 

1 
(2), where u^ =  Ue^ and T^ = Hx.  + P - MA^ - Ke)(l + ^^^"^'^"^ ^°'" n < K, with 

K .-1 
Se   = A e    and {eT,..,e^} an o.n.  set;    and with u„ = Uv„ and T„ = (P+);A.-Ke)fr  (1+e) 

n        n n i i\ n n ii -i   i 
-1 

for K + 1 < n < M, where Sv = e and V|,_|_-|,.. ,V|^^ is an o.n. set. The sets 

{Ui,..,U|,} and {T-|,..,T|,} are uniquely defined for any maximizing Gaussian vi^,x\ 

Proof: (a). From (5) 

C^(P) = sup 
M ^   ■ 

h  I  lOfT [1 + X'^A ^] , where y    ^ ]  +  <Sv , v >2, (v^, n<M} is a 

c.o.n. set, and the supremum is over all such c.o.n. sets and all (X ) such that 

M 2 
^X < P. Since g-, < go - • • - ^M ^^^ ^^^  non-decreasing eigenvalues of S, 



I l^  +  <Sv ,v >„] >^ [1 + 6 ] for all J < M and any fixed c.o.n. set 

{V , n<M}. The expression of C^(Pj in (a) and the unique covariance of the 

maximizing Gaussian y^,^N both now follow from Lemma 1 and Lemma 2. The same 

result holds if dim (H^) = L < - and dim [suppiy^^^^^] < M < L, since in this case 

S again has M smallest eigenvalues. 

(b) - (i). If S > el, then S-el does not have M smallest eigenvalues. 

However, given any e>0,  one can find eigenvalues Y^>-->Yf.-i such that 9 <Y^- < e+e 

for i < M. Using this in 1,3) one obtains 

l[yXY^ ^ n/2) I  ^09 [1 + T^] 

M 
= [MZ) I  log [1 + X^ (1 + Y^)-'] > (1/2) I  log [1 + X^ (1 + e+^)" ]• 

The expression on the right of the inequality is maximized, over all (X^) such that 

'^V < P, by defining X^ -  P/M, n < M. Thus, Cj^(Pj > (1/2)^ log [1 + (1 + e+e)-^/^] 

M 
■1 ■1, 

for all e>U, and so C^[P) > [1/2)1  log [1 + PM"'(1 + e) ]. For the reverse 

-1/2    2 
inequality, one notes that under the constraint E^ ||Rf^  A(Xj 112 ^ P> it is 

A 

shown in [1] that C^(P) - (M/2) log (1 + P/M). For S > el, 

1|R"^/2 ^^X)1|^ , d+ej-^llR-''/^ A(X)||2. Thus, EjlR'''/^ A(X)||^ . P implies 
X 

■^x" ^ 
"^/^ AU)ll2 ^  (1+9)'^"      ■   ■      ^  ■"   '   '^^ AU)ll2 ^ (1+e)'^P' giving C^lP) ^  [ft log [1 + ^^ir^'}  ' so that 

Cj^lP) = (M/2)   log [1 + PM"'(l+e)" ]. 

If S > el, with e an eigenvalue of multiplicity K, the above argument is 



10 

modified in an obvious way (y^ = 9 for i = i,..,min (K,M)) to again obtain 

C^^(P) = (M/2) log [1 +PM"^(l+e)'^] 

To prove  (b-ii), the proof of (a) is repeated after substituting X.  for g., 

i  < M. 

Now suppose that S has K<M strictly negative eigenvalues X-.  <  ... < Aw, 
K 1 -   - K 

and that EA + P '> ^x^^-  C^.(P) = sup   CJ^|(PT ^v) where • 
1 i iPyl) 

C^(P]'l) = sup 
1     ^ 2 -1 
^   E      log  [1  + X^  (1   + <SV^,  v^>2)     ] 

v^ = {V  , n £ M}    is any o.n.  set, 0 £ P-, £ P, and the supremum is over all   (X ) •   ■ 

K    2 M    2 
such that E X   £ P,,  E X   £ P.    ..Bepeating the analysis of (a) and (b-i), one finds that 

^ ^     - J 

Cu(PvX) =ih)  ^ log 
^    ' n=l 

hj^AlA 
j(i + \) 

+ (V2)(M-K)  log[l   ^(^.K)^H,y 

where J < K is the largest integer such that E A. + PT > JA,. Since this result holds 
— -ill      u 

for any o.n. set {v , n £ M}, it remains only to determine the value of P-, that 

maximizes Cj,(P, ,v_j (a differentiabie function of P-, in [0,P]). Differentiating, 

one sees that C|,(P-,,\^j is increasing with P-, so long as 

J        ^ J 
P, < [JP + (M-K)(Je - IA.)](M-K+J)" . Since P| < JAj^^ - JA., the precedi ng 

inequality is satisfied so long as (M-K+J)AJ_|_I " I^-J < P ■•" (M-K)e and this is 

satisfied because P + JA. > JA ,, A,^, < e. It follows that C|,(P-| ,y^j is an 



n 
K K 

increasing function of P-, for P-, < -Ix.  + Kx^.    Assuming that P-, > -[A. + Kx , 

1        ^ 
the maximum of C.,(P.,v) is attained uniquely by P = M [KP - (M-K)^A. + (M-K)Ke] 

W  I 1 1 1 

Using this value of P-, in tne expression tor c:|,(P,,v^), one obtains C^{P}  as in 

(b-iii). The statement on attaining capacity follows from the results of (b-i) 

and (b-ii). ,  : D 

Theorem 2: Suppose that H^ is infinite-dimensional, and that dim[supp(y„w)] is 

not constrained. 

(aj If {A ,n>l} is not empty, and ^(e-A ) < P, then 

C^(P) = i I log 
n 

1+e 
1+A.. n- 

T P + y(A -e) 
y   m  
"^      1+9 

(b) If {A ,n>l} IS not empty, and P < I  (e-A ), then there exists a largest 
" n   " 

N 1   '^ 
integer K such that ^A. + P > KA , and C^iP) = ^ I '^^^ 

p 
(cj If {A^,n>l} is empty, then C,^(P) = 2(1+9) • 

■K 

lA- P + K 

KU+X^j 

{d)  In (,a)> the capacity can be attained if and only if I (e-^„) = P- 
n .       . 

It is then attained by a Gaussian p„w with covariance operator as in (2), 

where u = Ue and T = (e-A )(1+A )~ for all n>l. In (b), the capacity n   n    n  ^  n' ^  n' r   J 

can be attained by a Gaussian y„w with covariance operator [z),  where ^AX 

K 
^A. + P + K 

u = Ue and T = 1 ^   - 1 for n<K; T^=0 for n>K. In (c), 
K(i+A^j 

"n 

the capacity cannot be attained. , 

Remarks. Theorem 2 has been proved for the case e=0 in [2]. Here we shall omit 

the detailed proof of Theorem 2 above; given lemmas 3-5 below, tne proof of the 



12 

Theorem in [2] can be applied 1n exactly the same way to prove the present 

Theorem 2. 

Several errata in [2] should be mentioned here. The expression for 

T (n<K) in the first line of p. 9 of [2 ] should read: 

T = (1 + X ) 
n  ^   n' 

-1 ■K 

I^i + P KX 
Ll 

/K. The expression for x on tne next-to-last line 

of p. 8 snould read: T = -A (1 + x^)'    for n>l. On p. 11, sixth line from 

bottom, P. should be P ; in the fifth line from bottom, C(P^,K) should read 

1 ^ 
C(P,,K) = W  log 

'    ^ n=l 

Tx. + P, + K 
V 1   1 

. K(l + X^)  . 
+ j {P -  P-,). These are all typing errata and 

do not affect tne development in [2] 

Lemma 3. Suppose that {A^,n>l} is an infinite set, and P>0. Then P + Jx^ > KX^ 

for ail K>1 if and only if P > ^ (^"^n^- 

K K 
Proof. P + y (x -9) > K(x^-9) <^ P + Ix    >  KX ; the result follows from 
      =j'  n       IN 1 n    I\ 

Lemma 3 of [ 2]• 

Lemma 4. Suppose that S-9I is strictly negative. 

(a) If P > l{Q-\),  then C^^(P) =\l  log 

The capacity can be attained can be attained if and only if P = ^ i^'^J- 
n 

It IS then attained by a Gaussian y^^^ with covariance operator (2j, where 

u^ = Ue^ and T^ = (9-x^)(1+x^)'^ for all n>l. 

[1+9  1 4 "P  +  liX^-Q)' 

_     1   +   9 

(b) If P < I (e-x ), then C^iP) - j   ^ log 
n=l 

h- + P + K 

KU+XJ . 
wnere K<°^  is the 

largest integer such that P + ^^x^ > Kx^^. The capacity can be attained by 
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Proof. 

a Gaussian y„w with covariance operator (2), where u^ = Ue^ and 

h* P + K 

^n " MJ+ry 

^n = 0 

1 for n<K 

for n>K. 

(a). The fact that 

'1+e 
2CJP) > I    log 

n>l 1+A 

P + y (A -e) 

1 + 6 
(*) 

follows from b-Uii) of Theorem 1, letting M ^ «> in that result. To prove 

the reverse inequality, one repeats the proof of part (a) of Lemma 4 in 

[ 2], substituting the RHS of (*) above for the RHb of (*) in [2 , p.11]. 

For this, one uses the fact that 

I  log 
n=l 

rM 
Vx. + P + M 
1 ' 

m+\) 
M 
I log 

n=l 

1+e 
1+A 

n-J 
+ M log 1 + 

M 

i = l 
M(l+9) 

The result on attaining capacity is proved in exactly the same way as the 

corresponding result in [2 ], again after substituting the KHS of (*) above 

for the RHS of (*) in [2, p.11]. 

1 K 
(b). Cj^(P) > ^ ^ log 

• K 
y A. + p + K 

i=i ' 
K(l+X ) (**) 

follows from (b-ii) of Theorem 1. Suppose that C^^(P) > RHS(**). Then by 

(5) there exists a c.o.n. set {v , n>l} and a sequence (X^j with an 

infinite number of non-zero terms (using (b-ii) of Theorem 1) such that 

RHS(*.) < ^ pog [1 + X^(l + <Sv^,v^>2)"''] (***) 
n 

with IA    < P. AS )^ X < «> and (1 + <Sv ,v >) is a bounded sequence, 
n n=l 

1 M ■ , 
(***) implies that for some h\«=°,  RHS(**) < ^   I log [l + X^(l + <Sv^,v >2) ] 

n=l 

This contradicts b-(ii) of Theorem 1. 
D 
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P 
Lemma 5. If S > el, then Cj^{P) = -^n + Q)   ' 

Proof. C,,(P) > P(l + 9)"^2"^ follows from part b-(ij of iheorem 1, by letting 
    W 

M -> oo. To prove the reverse inequality, one notes that for the constraint 

E l|Kj^^/^ A(X)ll2 ^ (1+ej'V, tne capacity (C^[(l+e)"^P]) is P(l+e)"^2"^ ' 
A ' 

[ 1, Theorem 2]. Since ElIR"^'A(X)|1^ < P implies   - ; 

R'^^^ A{Xj||2 s 0+e)~^P, optimization w.r.t, the former constraint is over 

a smaller set than w.r.t. the latter constraint; thus C,,(P] < Cf,[(l+e)" P], 
D 

Comparisons of C|,(P) and C^,(P) 

For the finite-dimensional channel, the capacity C^lP) given in Theorem Ua) 

-, M K 
is strictly greater than C|^(P) (= j log [1+P/M]) if l&.  < 0, or if P + Jg. < 0. 

C|,(P) < C|^(P) if 0 < B-i < 3[v,- The verification is omitted. 

For the infimte-dimensional channel, a general statement can be made if 

{x^,n>l} is empty. Then, C^(P) > C^(P) if e<0, C^^(P) < C^(P) if e>0, C,^(P) =  C^^(P) 

if e=0; see Theorem 1 (b-i) and Theorem 2 (c). Note that C|^(PJ = P/2 for the 

unconstrained channel [1, Theorem 2 ]. 

If {A ,n>l} IS not empty, then for the unconstrained channel the value of 

P 1 
C|.(P) given in Theorem 2(a) is greater than y/\+Q\   . using log x-  > 1-x. This 

inequality can also be shown for the value given in Theorem k:(bj, proceeding as 

in the proof of part (b) of the Theorem in [2]. Thus, for the unconstrained 

channel, C|,(P) > Cj^(P) if e<0 and {A ,n>l} is not empty. A similar result can be 

obtained for the constrained channel. 
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Discussion. 

The mismatched channel differs from the matched channel in several ways. 

First, the value of the capacity can be very different, as already seen. Secondly, 

the problem of attaining capacity is much more significant. Even in the 

finite-dimensional channel the vectors Uj,.. ,U|,^ must be a specific set of 

vectors, not just any o.n. set. If W^  is infinite-dimensional with 

dim[supp(y„, Y>j] ^ ''U the situation is even worse in (b-iii) of Theorem 1. That 

is, capacity can then be attained only if S has zero as an eigenvalue of 

multiplicity > M when S < el, or of multiplicity > M-K when S has K < n strictly 

K 
negative eigenvalues \^ <   .. < A,^ and P + l\^ > U^.    Otherwise, in order to 

approach capacity, one will need to put part of the available "energy" P in 

elements (Ue ) where (e ) are eigenvectors of S corresponding to successively 

smaller eigenvalues. In practical applications, this usually corresponds to 

eigenfunctions at higher and higher frequencies. 

For the infinite-dimensional channel without a constraint on dim[supp(y^^)J, 

again there can be significant differences between Z^\?)  and C^^P), depending on 

{e; \  ,  n>l}. However, in this case one sees a rather different situation in the 

problem of attaining capacity. C^[P)  can never be attained; C^lP) can be attained 

if and only if {A ,n>l} is not empty and P < ^ ^^~^n^ • .< 
n 

It may be noted that the results given in (a) and (b-ii) of Theorem 1 are 

similar to those obtained in [4, p. 170], although the developments are quite 

different. However, those previous results are given in terms of a constraint 

on E||A(X)||L and assume that the noise variance components can be arranged in 

ascending order. This can only be done if the channel is finite-dimensional. In 

that case, one can take R^^ = U the identity, and thereby use a true power constraint. 

The assumption (A-1) becomes R^ = I + S, and the capacity is as given in (aj; tnis 

agrees with the referenced results in [4]. 
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